ORIGINAL ARTICLES

Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-cis-Retinoic Acid ... 1165
K.K. Matthey and Others

Exogenous Reinfection as a Cause of Recurrent Tuberculosis after Curative Treatment ... 1174
A. Van Rie and Others

Transplantation of Thymus Tissue in Complete DiGeorge Syndrome ... 1180
M.L. Markert and Others

Antenatal Glucocorticoid Treatment and Cystic Periventricular Leukomalacia in Very Premature Infants ... 1190
O. Baud and Others

EDITORIALS

Exogenous Reinfection in Tuberculosis 1226
P.E.M. Fine and P.M. Small

Immune Reconstitution .. 1227
J.L. Weissman and J.A. Shizuru

Periventricular Leukomalacia — Prospects for Prevention ... 1229
A.A. Fanaroff and M. Hack

Racial Disparity in Rates of Surgery for Lung Cancer ... 1231
T.E. King, Jr., and P. Brunetta

INFORMATION FOR AUTHORS .. 1234

CORRESPONDENCE

The Chances for Health Care Reform 1235

Ultrasound Therapy for Calcific Tendinitis of the Shoulder 1237

Prospective Evaluation of a Patient with Trypanosoma cruzi Infection Transmitted by Transfusion ... 1237

Endocarditis Due to Streptococcus mitis with High-Level Resistance to Penicillin and Cefotaxime ... 1239

Effect of Highly Active Antiretroviral Therapy on Thrombocytopenia in Patients with HIV Infection ... 1239

Tissue Plasminogen Activator for Acute Ischemic Stroke 1240

HHV-8 Peripheral-Blood Viral Load and the Titer of Antibodies against HHV-8 ... 1241

Interventional Sialendoscopy .. 1242

BOOK REVIEWS .. 1244

NOTICES .. 1246
of peripheral-blood mononuclear cell DNA for the quantitation of HHV-8 DNA in peripheral-blood mononuclear cells (unpublished data). We found no relation between the titer of antibodies against the latent nuclear antigen of HHV-8 and the amount of HHV-8 DNA in plasma or peripheral-blood mononuclear cells (P = 0.93 and P = 0.49, respectively, by Spearman’s rank correlation) (Fig. 1, previous page). Although the results of this preliminary analysis of a small group of HHV-8–infected patients does not exclude the possibility that in some settings there is a relation between the titer of antibodies against HHV-8 and the peripheral-blood HHV-8 viral load, our findings provide evidence that the titer of antibodies against the latent nuclear antigen of HHV-8 is not a marker of the peripheral-blood HHV-8 viral load in persons with AIDS-related Kaposi’s sarcoma.

The authors and a colleague reply:

To the Editor: Campbell and colleagues investigated the correlation between titers of anti–HHV-8 antibodies and the viral load in a small group of HIV-infected patients with Kaposi’s sarcoma. In other studies of HIV-positive patients, HHV-8 was more readily detected by PCR in peripheral-blood cells from patients with Kaposi’s sarcoma than in peripheral-blood cells from those without Kaposi’s sarcoma, suggesting that the patients with Kaposi’s sarcoma had an increased HHV-8 viral load. Titers of anti–HHV-8 antibodies are also higher in HIV-positive patients with Kaposi’s sarcoma than in HIV-positive patients without Kaposi’s sarcoma. Therefore, there appears to be an association between the viral load and the antibody titer.

Anti–HHV-8 antibodies are detectable in a higher percentage of patients with classic Kaposi’s sarcoma (those without HIV infection) than patients with AIDS-related Kaposi’s sarcoma, suggesting that some patients with Kaposi’s sarcoma and AIDS have reduced or undetectable antibody responses against the latent nuclear antigen of HHV-8. Furthermore, patients with classic Kaposi’s sarcoma have higher titers of anti–HHV-8 antibodies than patients with AIDS and Kaposi’s sarcoma. Antiretroviral and antiviral drugs used in HIV-infected patients may directly or indirectly (through the restoration of cellular immunity) influence the HHV-8 load, the titer of anti–HHV-8 antibodies, or both, although it is unlikely that these drugs would be readily accessible in Zimbabwe. The correlation between the titer of anti–HHV-8 antibodies and HHV-8 load may therefore not be apparent in small groups of HIV-infected patients with Kaposi’s sarcoma, especially if they have been ill with HIV infection and Kaposi’s sarcoma for unspecified periods.

In the study of mother-to-child transmission, all the subjects were mothers and children who were attending a paternity-dispute clinic but whose HIV status was unknown. Whether there is a direct correlation between the titer and the viral load in HIV-negative persons, as we hypothesized, still needs to be determined.

Dimitra Bourboulla, M.Sc.
Chris Boshoff, M.R.C.P., Ph.D.
University College London
London WIP 6BT, United Kingdom

Freddy Sitas, D.Phil.
South African Institute for Medical Research
Johannesburg 2000, South Africa

Interventional Sialendoscopy

To the Editor: Obstruction of the salivary ducts is one of the main causes of sialadenitis. The principal diagnostic tool for disorders of the salivary duct is sialography, a procedure requiring high doses of radiation. Interventional sialendoscopy is a new procedure for visualizing the salivary ducts and treating their abnormalities. Attempts have been made to visualize salivary stones and to destroy them by internal or external lithotripsy. These techniques required many sessions, and stone fragments were removed blindly.

Progress in fiberoptic technology and miniaturization now allows the endoscopist to obtain high-quality images. We have developed a rigid endoscope that is 1.3 mm in diameter and that has a working channel and several miniature wire baskets for retrieving objects. A sialolith is removed under direct endoscopic control by introducing the sialendoscope into Stenson’s or Wharton’s duct. Small sialoliths can be extracted with the wire baskets (Fig. 1, facing page), whereas larger stones must first be fragmented. Removal of the obstruction results in immediate relief of symptoms. Preservation of the salivary glands is therefore
Figure 1. Removal of a Salivary Stone (Panel A) with a Wire Basket (Arrow in Panel B) during Endoscopy.

possible in a majority of patients, who previously would have had to undergo surgical extirpation of the glands.

FRANCIS MARCHAL, M.D.
PAVEL DULGUEROV, M.D.
WILLY LEHMANN, M.D.
Geneva University Hospital
1211 Geneva 14, Switzerland

©1999, Massachusetts Medical Society.